Archive | Animals RSS feed for this section

Can mice meditate?

17 Mar

Over at Deric’s Mindblog there is a post about this paper on mouse meditation! Here is the abstract:

Meditation training induces changes at both the behavioral and neural levels. A month of meditation training can reduce self-reported anxiety and other dimensions of negative affect. It also can change white matter as measured by diffusion tensor imaging and increase resting-state midline frontal theta activity. The current study tests the hypothesis that imposing rhythms in the mouse anterior cingulate cortex (ACC), by using optogenetics to induce oscillations in activity, can produce behavioral changes. Mice were randomly assigned to groups and were given twenty 30-min sessions of light pulses delivered at 1, 8, or 40 Hz over 4 wk or were assigned to a no-laser control condition. Before and after the month all mice were administered a battery of behavioral tests. In the light/dark box, mice receiving cortical stimulation had more light-side entries, spent more time in the light, and made more vertical rears than mice receiving rhythmic cortical suppression or no manipulation. These effects on light/dark box exploratory behaviors are associated with reduced anxiety and were most pronounced following stimulation at 1 and 8 Hz. No effects were seen related to basic motor behavior or exploration during tests of novel object and location recognition. These data support a relationship between lower-frequency oscillations in the mouse ACC and the expression of anxiety-related behaviors, potentially analogous to effects seen with human practitioners of some forms of meditation.

Here’s the Indian version of the Mickey Mouse show:

The bird has a mind of its own

10 Feb

When I saw this I though of this passage from Henry Beston’s The Outermost House

We need another and a wiser and perhaps a more mystical concept of animals. Remote from universal nature and living by complicated artifice, man in civilization surveys the creature through the glass of his knowledge and sees thereby a feather magnified and the whole image in distortion. We patronize them for their incompleteness, for their tragic fate for having taken form so far below ourselves. And therein do we err. For the animal shall not be measured by man. In a world older and more complete than ours, they move finished and complete, gifted with the extension of the senses we have lost or never attained, living by voices we shall never hear. They are not brethren, they are not underlings: they are other nations, caught with ourselves in the net of life and time, fellow prisoners of the splendour and travail of the earth.

(Hat tip to BoingBoing)

“The Amazing Spider Brain”

3 Feb

Another interesting story about invertebrate brains, in this case the spider:

“Spiders are very smart, that’s why we’re studying them,” says Ronald Hoy, a professor of neurobiology and behavior at Cornell University. “They use visual cues to steer by, and the kind of mazes that they can solve is considered to be pretty impressive for an invertebrate.”

Rasta Dogs?

30 Jan

This story has received a lot of attention on the internet.

In a study conducted with the Scottish Society for the Prevention of Cruelty to Animals, researchers at the University of Glasgow played six-hour Spotify playlists from five genres of music to shelter dogs. On one day, the dogs heard classical; on others they grooved to soft rock, reggae, pop and Motown. The researchers recorded the dogs’ heart rate variability, their cortisol levels and behaviors like barking and lying down — all measures of stress levels — as they listened to the tunes, as well as on days when no music was played.

I thought you might be interested in the article abstract:

Classical music has been shown to reduce stress in kennelled dogs; however, rapid habituation of dogs to this form of auditory enrichment has also been demonstrated. The current study investigated the physiological and behavioural response of kennelled dogs (n = 38) to medium-term (5 days) auditory enrichment with five different genres of music including Soft Rock, Motown, Pop, Reggae and Classical, to determine whether increasing the variety of auditory stimulation reduces the level of habituation to auditory enrichment. Dogs were found to spend significantly more time lying and significantly less time standing when music was played, regardless of genre. There was no observable effect of music on barking, however, dogs were significantly (z = 2.2, P < 0.05) more likely to bark following cessation of auditory enrichment. Heart Rate Variability (HRV) was significantly higher, indicative of decreased stress, when dogs were played Soft Rock and Reggae, with a lesser effect observed when Motown, Pop and Classical genres were played. Relative to the silent period prior to auditory enrichment, urinary cortisol:creatanine (UCCR) values were significantly higher during Soft Rock (t = 2.781, P < 0.01) and the second silent control period following auditory enrichment (t = 2.46, P < 0.05). Despite the mixed response to different genres, the physiological and behavioural changes observed remained constant over the 5d of enrichment suggesting that the effect of habituation may be reduced by increasing the variety of auditory enrichment provided.

I would be very interested in knowing the magnitude of the effect for different types of music (t scores and p values do not tell us the effect size, something could be statistically significant, but of such a small magnitude to have no practical importance). Unfortunately, I am not able to access the article itself.

A CAT scan of a bee brain

27 Jan


A bee brain is tiny, yet it has amazing computational power.

Using a technique called  micro-computed tomography, a group of researches have produced CAT scan images of the brain of a bumble bee. You can see them here.

Why is this important? The authors explain:

Despite their comparatively small size, insect brains are capable of rapidly detecting and responding to a plethora of diverse stimuli in a wide range of sensory modalities, facilitating their global ecological success and establishing them as an essential model system for cognitive biology and neuroscience. Although insect brains are smaller and simpler than their vertebrate counterparts, there is increasing evidence that insect cognitive performance can be impressive. For instance, foraging insects must learn and memorise navigation routes in complex landscapes requiring the ability to detect, distinguish and integrate a multitude of chemical, visual, landmark and celestial cues. Therefore, knowledge of insect brain structure allows us to understand how comparatively small (and simple) brains can generate complex patterns of behaviour and act as a gateway to understanding more complex brains and their evolutionary development. Indeed, variation in the volume of brain regions (examined using histological techniques) has been reported to be linked to differences in innate responses to stimuli, age/experience related behavioural transitions behavioural syndromes and rates of learning and performance in cognitive tasks. Yet, there remains much to discover about how insect brain structure relates to individual behaviour. Closing such a fundamental knowledge gap requires the development of new imaging protocols and the application of novel strategies to measure, record and robustly quantify aspects of brain morphology across multiple individuals.


Sharks have personality

16 Dec

So says a paper in The Journal of Fish Biology:

This study examined interindividual personality differences between Port Jackson sharks Heterodontus portusjacksoni utilizing a standard boldness assay. Additionally, the correlation between differences in individual boldness and stress reactivity was examined, exploring indications of individual coping styles. Heterodontus portusjacksoni demonstrated highly repeatable individual differences in boldness and stress reactivity. Individual boldness scores were highly repeatable across four trials such that individuals that were the fastest to emerge in the first trial were also the fastest to emerge in subsequent trials. Additionally, individuals that were the most reactive to a handling stressor in the first trial were also the most reactive in a second trial. The strong link between boldness and stress response commonly found in teleosts was also evident in this study, providing evidence of proactive-reactive coping styles in H. portusjacksoni. These results demonstrate the presence of individual personality differences in sharks for the first time. Understanding how personality influences variation in elasmobranch behaviour such as prey choice, habitat use and activity levels is critical to better managing these top predators which play important ecological roles in marine ecosystems.

Personality differences are not unique to humans and there is a large body of research on this topic.

Canine Mensa?

4 Nov

An article in The Independent reports on Britain’s smartest dogs.

And then there’s this:

%d bloggers like this: