Tag Archives: Animal cognition

Can mice meditate?

17 Mar

Over at Deric’s Mindblog there is a post about this paper on mouse meditation! Here is the abstract:

Meditation training induces changes at both the behavioral and neural levels. A month of meditation training can reduce self-reported anxiety and other dimensions of negative affect. It also can change white matter as measured by diffusion tensor imaging and increase resting-state midline frontal theta activity. The current study tests the hypothesis that imposing rhythms in the mouse anterior cingulate cortex (ACC), by using optogenetics to induce oscillations in activity, can produce behavioral changes. Mice were randomly assigned to groups and were given twenty 30-min sessions of light pulses delivered at 1, 8, or 40 Hz over 4 wk or were assigned to a no-laser control condition. Before and after the month all mice were administered a battery of behavioral tests. In the light/dark box, mice receiving cortical stimulation had more light-side entries, spent more time in the light, and made more vertical rears than mice receiving rhythmic cortical suppression or no manipulation. These effects on light/dark box exploratory behaviors are associated with reduced anxiety and were most pronounced following stimulation at 1 and 8 Hz. No effects were seen related to basic motor behavior or exploration during tests of novel object and location recognition. These data support a relationship between lower-frequency oscillations in the mouse ACC and the expression of anxiety-related behaviors, potentially analogous to effects seen with human practitioners of some forms of meditation.

Here’s the Indian version of the Mickey Mouse show:

Crows Outperform Pigeons and Primates in Learning a Basic Concept

24 Feb

A paper just published in Psychological Science:

Corvids (birds of the family Corvidae) display intelligent behavior previously ascribed only to primates, but such feats are not directly comparable across species. To make direct species comparisons, we used a same/different task in the laboratory to assess abstract-concept learning in black-billed magpies (Pica hudsonia). Concept learning was tested with novel pictures after training. Concept learning improved with training-set size, and test accuracy eventually matched training accuracy—full concept learning—with a 128-picture set; this magpie performance was equivalent to that of Clark’s nutcrackers (a species of corvid) and monkeys (rhesus, capuchin) and better than that of pigeons. Even with an initial 8-item picture set, both corvid species showed partial concept learning, outperforming both monkeys and pigeons. Similar corvid performance refutes the hypothesis that nutcrackers’ prolific cache-location memory accounts for their superior concept learning, because magpies rely less on caching. That corvids with “primitive” neural architectures evolved to equal primates in full concept learning and even to outperform them on the initial 8-item picture test is a testament to the shared (convergent) survival importance of abstract-concept learning.

The article’s conclusion contains this passage:

So, how did the apparently primitive bird brain that evolved from dinosaurs become competitive with, and even initially outperform, the abilities of what has been considered a more elaborate primate brain to perform abstract-concept learning, which involves thoughts and processes considered to be of the highest cognitive order? The answer most certainly lies in evolution itself, a multimillion-year process. Environmental pressures (social and otherwise) undoubtedly selected for and shaped these different neural architectures to successfully accomplish many of the same essential and intelligent behaviors for survival, an example of convergent evolution in which organisms not closely related (i.e., not monophyletic) independently evolved similar traits or functions as a result of having to adapt to similar environments or ecological niches. But the example of convergent evolution presented in the current study is comparatively novel and unique because its identification required special tests of the cognitive ability (trait) for the cognitive function of fully learning a same/different abstract concept to be revealed. Other examples of convergent evolution have been based on some obvious physical trait, such as wings, which typically can be identified from fossil records and have an obvious function of flying (some insects, birds, and bats).

The bird has a mind of its own

10 Feb

When I saw this I though of this passage from Henry Beston’s The Outermost House

We need another and a wiser and perhaps a more mystical concept of animals. Remote from universal nature and living by complicated artifice, man in civilization surveys the creature through the glass of his knowledge and sees thereby a feather magnified and the whole image in distortion. We patronize them for their incompleteness, for their tragic fate for having taken form so far below ourselves. And therein do we err. For the animal shall not be measured by man. In a world older and more complete than ours, they move finished and complete, gifted with the extension of the senses we have lost or never attained, living by voices we shall never hear. They are not brethren, they are not underlings: they are other nations, caught with ourselves in the net of life and time, fellow prisoners of the splendour and travail of the earth.

(Hat tip to BoingBoing)

“The Amazing Spider Brain”

3 Feb

Another interesting story about invertebrate brains, in this case the spider:

“Spiders are very smart, that’s why we’re studying them,” says Ronald Hoy, a professor of neurobiology and behavior at Cornell University. “They use visual cues to steer by, and the kind of mazes that they can solve is considered to be pretty impressive for an invertebrate.”

Sharks have personality

16 Dec

So says a paper in The Journal of Fish Biology:

This study examined interindividual personality differences between Port Jackson sharks Heterodontus portusjacksoni utilizing a standard boldness assay. Additionally, the correlation between differences in individual boldness and stress reactivity was examined, exploring indications of individual coping styles. Heterodontus portusjacksoni demonstrated highly repeatable individual differences in boldness and stress reactivity. Individual boldness scores were highly repeatable across four trials such that individuals that were the fastest to emerge in the first trial were also the fastest to emerge in subsequent trials. Additionally, individuals that were the most reactive to a handling stressor in the first trial were also the most reactive in a second trial. The strong link between boldness and stress response commonly found in teleosts was also evident in this study, providing evidence of proactive-reactive coping styles in H. portusjacksoni. These results demonstrate the presence of individual personality differences in sharks for the first time. Understanding how personality influences variation in elasmobranch behaviour such as prey choice, habitat use and activity levels is critical to better managing these top predators which play important ecological roles in marine ecosystems.

Personality differences are not unique to humans and there is a large body of research on this topic.

Canine Mensa?

4 Nov

An article in The Independent reports on Britain’s smartest dogs.

And then there’s this:

Intelligent fish

24 Aug

Joseph Stromberg at Vox challenges the common notion that fish are dumb:

‘Australian biologist Culum Brown has a provocative argument in response, based on his years of research into fish behavior and learning. “They’re just not any less intelligent or sophisticated than terrestrial animals,” he says. “That idea is a total myth.”‘

The article is an extended interview with Brown and, towards the end, discusses the ethical implications of this research.

 

%d bloggers like this: